Laboratorium Akustyki Architektonicznej

<u>Ćwiczenie 5:</u> Pomiary drgań własnych pomieszczeń o małej kubaturze.

Cel ćwiczenia:

Pomiary i ocena rezonansów akustycznych w pomieszczeniu o małej kubaturze.

Zadania do przygotowania

- Pole akustyczne w pomieszczeniu w ujęciu metodą falową.
- Drgania własne pomieszczeń prostopadłościennych.
- Zanikanie energii w pomieszczeniu w zakresie małych częstotliwości.

Program ćwiczenia:

- 1. Pomiary częstotliwościowej charakterystyki przenoszenia pomieszczenia (p.607).
- 2. Ocena rozkładu drgań własnych pomieszczenia.
- 3. Wyznaczenie "czasu pogłosu" dla wybranych częstotliwości drgań własnych pomieszczenia.

Literatura:

- 1. Everest F.A., Podręcznik akustyki, s.361-399, Sonia Draga, Katowice, 2004.
- 2. Wykład Akustyka Architektoniczna.

Układ pomiarowy:

Instrukcja szczegółowa do Ćw.5

- 1. Pomiary zależności poziomu ciśnienia akustycznego w funkcji częstotliwości zestawu głośnikowego dla różnych konfiguracji:
 - a. głośnik w narożu przy ścianie do amplifikatorni mikrofon w przeciwległym narożu pomieszczenia na wysokości 40 cm;
 - b. głośnik w narożu przy ścianie do amplifikatorni mikrofon w przeciwległym narożu w połowie wysokości pomieszczenia;
 - c. głośnik w narożu przy ścianie do amplifikatorni mikrofon w na osi głośnika dla $r < r_g$;
 - d. głośnik w narożu przy ścianie do amplifikatorni mikrofon na środku pomieszczenia na wysokości 40 cm;
 - e. głośnik w narożu przy ścianie do amplifikatorni mikrofon na środku w połowie wysokości pomieszczenia;
 - f. głośnik w narożu przy ścianie do amplifikatorni mikrofon przy ścianie z oknami w odległości 1 m od ściany przedniej pomieszczenia na wysokości 40 cm;
 - glośnik w narożu przy ścianie do amplifikatorni mikrofon przy ścianie z oknami w odległości 2 m od ściany przedniej pomieszczenia na wysokości 40 cm;
 - h. głośnik w narożu przy drzwiach wejściowych mikrofon w przeciwległym narożu pomieszczenia na wysokości 40 cm;
 - i. głośnik na środku pomieszczenia mikrofon w narożu (jak w punkcie a) pomieszczenia na wysokości 40 cm (sprawdzić zasadę wzajemności).
- 2. Na zmierzonych wykresach zidentyfikować pierwsze 16 rezonansów akustycznych. Dla 6 pierwszych modów wyznaczyć "czas pogłosu" w pomieszczeniu na podstawie szerokości krzywych rezonansowych modów akustycznych.

Ćw.5 Instrukcja obsługi AP2700

<u>Uwaga 1:</u> W systemie AP2700 część ułamkowa jest oddzielona od części całkowitej "kropką". Po wpisaniu nowych wartości liczbowych należy je zaakceptować klawiszem **Enter**.

Ćw.2. cz.l

Po uruchomieniu systemu AP 2700 i rozwinięciu okienek "Analog Generator" i "Analog Analyzer" należy:

- 1. W okienku "Analog Generator" ustawić, jak na rys.1:
 - Frequency <u>100 Hz</u>
 - High Acc.
 - Configuration Unbal-Gnd
- 2. W okienku "Analog Analyzer" ustawić:
 - Oba kanały Channel A i B na BNC-Unbal
 - A Function Reading
 - 2-Ch Ratio
 - **BW** 22Hz-22kHz

Wybrać stronę **Page 2** (na dole ekranu) i dokonać następujących nastaw, jak na rys.2:

- 3. Data 1 Anlt Ratio
- 4. Zaznaczyć okienko *Autoscale*
- 5. Wstępnie ustawić zakres zmienności poziomów sygnału *Top* <u>+20 dB</u> *Bottom* <u>-30 dB</u>
- 6. Data 2 Anlt.LevelB
- 7. Top <u>+20 dBV</u> Bottom <u>-30 dBV</u>
- 8. Zmienić zakres przestrajanych częstotliwości wpisując jako *Start <u>100 Hz</u>, <i>Stop* <u>25Hz</u>, *Steps* <u>360</u>
- 9. Zaznaczyć Append

Wrócić do strony **Page 1** i włączyć generator (*Outputs ON*)

Wrócić do strony Page 2 i włączyć przestrajanie generatora Go

Po zakończeniu kreślenia charakterystyk częstotliwościowych ewentualnie dobrać skalę na osi Y.

Zapisać uzyskany przebieg (File – Export – Graphics), jak też do dalszej obróbki w programie AP2700 (File – Save As – Data).

Wartości częstotliwości poszczególnych modów drgań należy odczytać przy pomocy kursorów opracowując sprawozdanie. Ze strony firmy Audio Precision można pobrać nieodpłatnie program obsługi systemu AP2700. Po uruchomieniu go w wersji Demo i wczytaniu poszczególnych zapisanych przebiegów należy uaktywnić kursory (**Display Cursors)** przy pomocy prawego klawisza myszy, gdy znacznik myszy znajduje się w polu wykresu (rys. 4).

🕵 Audio Precision AP2700 - Untitled1	
File Edit View Panels Sweep Compute Macro Utilities Window Help	
ii 🖧 🝰 🗐 🍃 🙇 🤊 🌡 🗐 🛍 🚳 😆 🕺	
👒 🐏 💌 🔳 🕘 66' 🗣 📮 🚎	
🖂 👆 🧰 🌞 🛱 💴 🗰 💢 🌾 🕺 🔶 🏥 👫 📑 🖳 🛄 💻 🌞 🎒	
🕮 🕮 🎇 🌃 🗱 🗰	
💽 Analog Generator 📃 🗖 🔀	🔍 🗐 🔍 🧟 🕅
Wfm: Sine V Normal V	DC Channel A Channel B DC
Frequency: 45.5283 Hz V Fast	100 V BNC-Unbi V 100 V BNC-Unba V
• High Acc.	459.1 mV • - Level - 90.93 mV •
	99.9956 Hz 🗸 - Freq - 100.007 Hz 🗸
Elsen Elsente	🗹 🗹 Auto Range 🗹
Invert CHR Outputs CHB Invert	Phase: 44.70 deg V Auto V
1.000 Vms 🗸 - Ampitude - 🗸 🗸	
EQ Curve	2-Ch. Ratio 🗸 500.359 %
💌 Post EQ 🔍	V Auto Bange
Configuration Z-Out (Ohms)	Det: Auto 🔽 RMS 🔽 BP/BR Filtr Freq
Unbal - Gnd 💌 💿 20 🔘 600	BW: 22 Hz 💙 22 kHz 💙 Sweep Track 🗹
	Fitt: None 💙
References	References Freq: 1.00000 kHz
dBm: 600.0 Ohms Freq; 1.00000 kHz	dBr A: 387.3 mV 🗸 Watts: 8.000 Ohms
d8r: 387.3 mV 💙 Watts: 8.000 Ohms	dBr B: 387.3 mV 💌 dBm: 600.0 Ohms

Rys.2.

