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LABORATORY OF ELECTROACOUSTICS 
 

EXERCISE 1.  

Vibration of mechanical systems. 

 
The purpose of the exercise:  

The aim of the exercise is learning about the properties of vibrating systems and 
measurement methods as well as vibration analysis. As part of the exercise, measurements of 
parameters describing transverse vibrations of bars clamped at one end and free ones at the 
other will be made. 
 

I. Measuring system. 
 

 
1 - examined vibrating system, 2 - vibration exciter, 3 - power amplifier, 4 - generator, 
5 - frequency meter. 
 

II. Laboratory tasks 
2.1. Measure the frequency of transverse own vibrations (modes) of beams of different 
lengths and cross-sections, made of different materials. 
2.2. Determine the first three ways (modes) of transverse vibrations of beams. 
2.3. Obtain the obtained results in the table according to the formula (table 3) and compare 
with the theoretical results using the relations given in Appendix A and material data 
given in Tables 1 and 2.  
 
3. Issues to prepare 
3.1. Vibrations of strings, rods, beams and plates. 
3.2. Natural frequencies (modes). 
 
Literature 
[1] Dobrucki A., Fundamentals of acoustics. PWR script, Wroclaw 1987. 
[2] Januszajtis A., Physics for Polytechnic, Volume III Waves, §5. PWN W-wa 1991. 
[3] Żyszkowski Z., Fundamentals of electroacoustics, 3rd edition. WNT W-wa 1984, ch.6. 
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Tabel 1. Material data. 
 

Material 
Coefficient of elasticity 

longitudinal (Young's modulus) 
E [N/m2] 

Density 
ρ [kg/m3] 

Wave speed 
longitudinal (sound) 

cL [m/s] 
Steel 2,2 1011 7800 5900 
Brass 1,0 1011 8600 3830 
Duralumin 0,7 1011 2700 5982 
Plexiglas  4,45 109 1180 2670 
 
Table 2. Moments of inertia of cross-sections with different shapes. 
 
Cross section shape 

transverse 
Rectangular 

(a x b) 
Circular 

(r) 
Equilateral triangle 

(a) 
Moment of inertia 
cross-section [m4] 

 
a3b/12 πr4/4 √3

96 푎  

 
Table 3. Measurement and calculation results for one measured object. 
 

Material Dimensions n fn,meas 
[Hz] 

fn,calc 
[Hz] 

δf 
[%] m xnm,meas 

[mm] 
xnm,calc 
[mm] 

δx 
[%] 

 

l =  …….; 
a = …….; 
b = …….; 
r = …….; 

 
S = …….; 
I = …….; 

1    - - - - 
2    1    

3    1    
2    

4 
   1    

2    
3    

 
The indications in table are as follow: 
l – lenght [m]; 
a – thickness [m]; 
b – width [m]; 
r – radius [m]; 
S - cross-section area [m2]; 
I - moment of inertia of the cross-section [m4]; 
n - vibration mode number; 
m - vibration node number;  
fn,meas – measured frequency for mode n; 
fn,calc – calculated frequency for mode n; 
xnm,meas – measured distance from node m to clamped site of bar for mode number n;  
xnm,calc – calculated distance from node m to clamped site of bar for mode number n; 

 
Formulas for calculating error are as follow:  
δf = (fn,meas - fn,meas) /  fn,meas x 100% - frequency error for mode n; 
δx = (xnm,calc - xnm,meas) / xnm,meas x 100% - distance error for mode n and node m;  
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Appendix A 
 

BAR OSCILLATION 
 

 We consider a bar with a uniform cross-section S [m2], made of material with a 
density ρ [kg/m3] and the elasticity coefficient of the longitudinal material (Young's 
modulus) E [N/m2]. 

 Unlike strings, the tension is not taken into account. It is assumed that the total force 
returning the rod to the balance position comes only from its own resilience. 

 The rod can vibrate longitudinally, transversally and torsionally (vortex). 
 

I. LONGITUDINAL BAR OSCILLATION. 
 

 

 
Under the influence of the force F, the distance ξ between any two cross-sections has 

increased by 푑휉 = 푑푥, so the relative elongation of the bar in this area is 휀 = , and 
according to Hooke's law, proportional to the tension σx: 

 

휀 =
휎
퐸 =

1
퐸

퐹
푆 ,  ⇒  퐹 = 휀퐸푆. 

 
The force acting on the right cross-section is equal: 

 

퐹 +
휕퐹
휕푥 푑푥 = 퐹 + 퐸푆

휕 푥
휕푥 푑푥, 

 

l 

bar (E, S, ρ) 

x 

effective force F(t) 

bar 
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that is, the final force on the bar section dξ is: 
 

푑퐹 = 퐸푆
휕 푥
휕푥 푑푥. 

 
It is the force of elasticity. Under the influence of this force, the mass of the bar section dx 
equal dm =  Sρdx, is accelerated  . Thus, based on Newton's second law, we get the 
equation: 
 

휕 휉
휕푡 = 푐

휕 휉
휕푥 , (1) 
 

where 푐 = 퐸/휌 [m/s] is the speed of the longitudinal wave (sound) in the rod. 
It is a wave equation, one-dimensional (sound wave in the rod). Any type of function ξ(x+ct) 
meet the condition. 
 

To determine the own vibrations of the rod, the procedure is similar to that of the 
string, i.e. the method of separating the variables. The solution is to solve the equation (1) in 
the form of the product of two functions, one of which depends only on x and the other only 
on t. 
 

휉(푥, 푡) = 푋(푥)푇(푡) 
 
Finally, the solution of the wave equation is: 
 

휉(푥, 푡) = (퐶 푐표푠휔 푡 + 퐶 푐표푠휔 푡)푠푖푛
푛휋
푙 푥, (2)  푛 = 1,2, … 

 
where the constants C1n, C2n are determined from the initial conditions, and the natural 
frequencies (modes) are equal to: 
 

휔 =
푛휋
푙

퐸
휌 , (3) 

푟푎푑
푠 . 

 
It should be noted that the frequencies of the longitudinal own vibration of the bar are, like the 
strings, harmonics in relation to the basic frequency ω1 (n = 1). 
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II. TRANSVERSE VIBRATIONS OF THE ROD 
 

 
The transverse oscillation of the bar with a constant cross-section S and the density ρ 

along the length l describes the equation: 
 

휌푆
휕 푧
휕푡 +

휕
휕푡 퐸퐼

휕 푧
휕푡 = 0, (4) 

 
where the expression in brackets is the bending moment, while I is the moment of inertia of 
the cross-section of the rod 
 

퐼 = 푧 푑푆. 

 

Equation (4) is not a wave equation. If we put in  a wave solution in formula (4) in the form 
푧(푥, 푡) = 푍푒푥푝(푗(휔푡 − 푘푥)), we will get a dispersive formula (dispersion - a phenomenon in 
which the speed of the wave depends on the frequency): 
 

휔 = 푘
퐸퐼
휌푆 , 

 
where k=2π/λ is wave number, λ - the length of the transverse wave. 
From this formula  we can conclude that the speed of moving the surface of a constant phase, 
witch is the phase velocity of transverse vibrations, is equal to: 
 

푐 =
휔
푘 = 휔푐

퐼
푆  

→
⎯⎯ ∞. 

 
For physical reasons this is impossible, therefore the equation (4) is not strict. However, for 
low frequencies for which the transverse wavelength λ is much larger than the linear 
dimensions of the rod cross-section (a/λ<0.1), equation (4) is sufficiently accurate for 
technical applications. Substituting for the equation (4): z(x,t)=Z(x)exp(jωt), we get: 
 

푑 푍(푥)
푑푥 − 휇 푍(푥) = 0, (5)  휇 = 휔

휌푆
퐸퐼. 

l 

bar (E, S, ρ) 

x 

effective force F(t) 
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The solution of equation (5) can be presented as: 
 

푍(푥) = 퐴 푒 + 퐴 푒 + 퐴 푒 +퐴 푒
= 퐵 푐표푠ℎ휇푥 + 퐵 푠푖푛ℎ휇푥 + 퐵 푐표푠휇푥 + 퐵 푠푖푛휇푥. (6) 

 
The solution of equation (6) contains four constants to determine which four boundary 
conditions are needed, two at each end of the bar. 
 
The case when one end of the rod is clamped and the other end is free. 
 
            For x = 0, the deflection and inclination of the bar must be zero: 
 

푍(0) = 0 푎푛푑 �푑푍(푥)
푑푥 = 0. 

 
Then B1 = -B3 and B2 = -B4. 
 
For x=l the bending moment and the shear force at the free end of the bar must be zero: 
 

�푑 푍(푥)
푑푥 = 0  푎푛푑  �푑 푍(푥)

푑푥 = 0.  

 
Therefore 
 

퐵 = 퐵
푠푖푛휇푙 − 푠푖푛ℎ휇푙
푐표푠휇푙 + 푐표푠ℎ휇푙 = −퐵

푐표푠휇푙 + 푐표푠ℎ휇푙
푠푖푛휇푙 + 푠푖푛ℎ휇푙 , 

 
where 
 

(푐표푠휇푙 + 푐표푠ℎ휇푙) = 푠푖푛ℎ 휇푙 − 푠푖푛 휇푙, 
푐표푠휇푙 ∙ 푐표푠ℎ휇푙 = −1. 

 
The eigenvalues of the last equation are: 
 

⎩
⎨

⎧
휇 푙 = 1.8751,
휇 푙 = 4.6946,
휇 푙 = 7.8548,

휇 푙 = 10.9957,

� 

 
For these values μn, n = 1, 2, ..., we obtain from equation (5) the frequencies of transverse 
vibrations of the rod: 
 

휔 = 휇
퐸퐼
휌푆 . (7) 

 
The next figure shows the first four modes of transverse vibrations of a rod clamped at one 
end. 
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Where:  
 

푓 =
0.5596

푙
퐸퐼
휌푆 , [퐻푧] 

푓 = 6.268푓 , 

푓 = 17.548푓 , 

푓 = 34.387푓 . 
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III. TORSIONAL VIBRATIONS OF ROD 
 

 
 

 When the rod is triggered by the torque, torsional (vortex) vibrations arise. The rod 
that transmits the torsional moments is called the shaft. 
 
The basic frequency of self-oscillating vibrations is given by: 
 

푓 =
1
2푙

퐸
2휌(1 + 휎) , [퐻푧] 

 
where: σ - Poisson's number. 
 
Vibration frequencies of the higher modes are harmonic in relation to the fundamental 
frequency f1. 

bar (E, S, ρ) 

x 

twists force F(t) 


